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Density waves in low-pressure plasma columns 

By L, C.  WOODS 
Balliol College, Oxford 

(Received 22 March 1965) 

Density waves in low-pressure arc discharges have been observed travelling 
towards the anode with speeds near (KT,/M)*. A dispersion relation for these 
waves is developed, taking into account the boundary effects, namely, the 
continuous loss of ions to the containing walls. This theory is in fair agreement 
with experiment, except in its prediction of a rather high value for the wave 
damping. However, by allowing for the effect of electrostatic instabilities on 
anode-approaching waves, due to electron drift, this discrepancy is satisfactorily 
explained. 

1. Introduction 
Tonks & Langmuir (1929a) were among the first to study the electro-acoustic 

density waves found in low-pressure mercury-arc discharges. They predicted 
phase velocities close to (KT,/M)~, where Xis  the electron temperature and M the 
ion mass. Since this early work, the problem has been investigated experi- 
mentally by several people, including Hatta & Sat0 (1961), Little (1962), Craw- 
ford & Self (1963), Alexeff & Neidigh (1963); several more references are to be 
found in the recent contribution of Barrett & Little (1965). At low frequencies 
there are two types of wave in low-density plasma, viz. the ‘forward’ or electro- 
acoustic wave with group and phase velocities in the same direction, and the 
‘backward ’ or ionization wave with these velocities opposed (Pekkek 1963). This 
paper is concerned with the theory of the forward waves, a t  pressures low enough 
to make the mean free path for collisions between particles much larger than the 
discharge radius. 

The experiments on forward waves (Barrett & Little 1965) reveal two inter- 
esting points, viz. (i) that the waves appear to have a cut-off frequency below 
which they are evanescent, and (ii) that only anode-approaching waves are 
readily observed. The waves are damped by ion loss to the walls containing the 
discharge, and as damping is known in other wave-propagation problems to 
eliminate a sharp cut-off (e.g. see Woods 1962, Jephcott & Malein 1964), it seems 
likely that waves exist at all frequencies, but that those in the experimentally 
found cut-off range are too heavily damped to be observable. In fact a rough 
estimate of the damping by irreversible wall collisions gives such a high value that 
it is surprising that any waves are observed at all. Bickerton (unpublished) and 
Little (1962) have provided a qualitative explanation of this point and also 
(ii) above, by pointing out that the electron-drift speeds towards the anode are 
high enough to excite electrostatic instabilities (Stringer 1964). This effect 
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reduces, and may even eliminate, the damping for anode-approaching waves, but 
augments the damping of cathode-directed waves. 

We shall deal with a cylindrical discharge having constant steady-state pro- 
perties along its length, say the Ox-direction. Of course the steady-state solution 
needs to be known before the theory of small, wave-like perturbations can be 
developed. Let nes, n, denote the steady-state electron and ion densities, and 
let $s be the corresponding electrostatic potential, then the Tonks-Langmuir 
theory (1 929 b )  gives these numbers as functions of the radius r from the discharge 
axis. In  this theory the whole radial interval (0, r,,) is divided into an inner region 
in which nes = n, and a thin sheath near the wall in which the charge density is 
not zero. In  most experiments this sheath is thin enough to be neglected; we shall 
do this and set n, = ni = n, say, for both steady and unsteady motions. Then on 
assuming an isothermal discharge, we can integrate Ohm’s law in the form 
0 = - V$ + KT, Vnlen to find that 

n = n,e-q, T,I = - e $ / K z ,  (1)  

for steady and unsteady arcs. The rate at which ions are generated per unit 
volume will be put equal to u p ,  where 6 is a constant and a = ( K T , / M ) * ,  then for 
this case Tonks & Langmuir find the integral equation 

J2 exp ( - 7s) = - T’{%P) - vs(r’)}-+ exp { - W’)) dr‘, PSI 
for the steady state. This is solved numerically, and then the boundary condition 
dys/dr = m at r = r,, gives the eigenvalue 

3r,, z 1.092. (2) 

This exact integral-equation treatment of the steady state is not at  all easy to 
extend to the unsteady case, and so in the next section we give an approximate 
differential-equation formulation of the problem not having this disadvantage. 
The somewhat involved second-order differential equation for the perturbation 
ion velocities that follows, is solved numerically to give the dispersion relation 
P ( w , k )  = 0, where w is a real frequency and k a complex wave-number, 
k = k, + ik,. Finally, Stringer’s (1964) theory of electrostatic instabilities is used 
to modify the damping length k ~ l ,  and so predict the conditions under which 
growing waves can be expected. 

2. Approximate theory 
Let fj ions have the velocity uj,  and write 

then conservation of mass and momentum of the ions gives 

and 

&/at + V .  (nv) = asn 

a 1 
- (nv)+V.(nvv)  = -- (V.p,+eV$), 
at M 
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where 

is the ion-pressure tensor relative to the drift velocity v. The approximation we 
shall use is simply 

which will be justified later for the steady arc discharge. Then by (l), (4) and (6), 
( 5 )  can be written 

Pi 3 &fj(Uj - v) (Uj - v), 
3 

(6) 

(7) 

Pi = 0, 

[(apt) + V .  V] v + abv = a2Vy. 

Let = V x v be the vorticity, and dldt F a/at f v.V be the rate of change 
following the motion, then the curl of (7), viz. 

a< - - V A ( V A < ) + ~ &  = 0, 
at 

can, with the aid of (4), be arranged in the form 

d (3) = (;) .vv. 
dt n 

From this result we draw the conclusion, familiar in classical fluid mechanics, 
that a fluid element initially without vorticity never acquires any (Stokes’s 
theorem). In  the steady-state v is entirely radial, so <, = 0. And if we now assume 
that the unsteady motions are generated smoothly from this steady state, it 
follows that 

V A V Z O .  (9) 

Turning now to the steady state, so that we may have a comparison with the 
exact Tonks-Langmuir theory, we find from ( l ) ,  (4) and (7) that 

(rnsu)’/r = gns, 

gu+uu’ = 7: = -n&,, 

where u = vJa and the accents denote radial derivatives. Let x -= r/ro, then from 
(10) we find the non-linear equation 

d u  
dx 1 -u2 

ar,( 1 + u2) - u / x  -- - 
7 

which has been solved numerically (see table 1). It is found that at u = 1, where 
du/dx and 7; are infinite, arox M 1.109, and so following Tonks & Langmuir, we 

3ro 0.1 0.2 0.3 0.4 0.5 0.6 

U 0.0501 0.1008 0.1526 0.2064 0.2630 0.3236 

3ro x 0.7 0.8 0.9 1.0 1.0321 1-0583 
U 0.3900 0.4652 0.5546 0.6722 0.7222 0.7722 

0.9722 E- 1 1.0222 
3ro x 1.0788 1.0938 1.1037 1.1087 1.1089 
U 0.8222 0.8722 0.9222 

TABLE 1. Steady-state solution 
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can put the wall at  x = 1 provided 3 satisfies 

a = &ro z 1.109, 

which is remarkably close to the exact value given in (2). A very close fit to the 
numerical solution given in the table is 

which gives n,(r) differing by only a few percent from the T - L theory. 
As a further check on the approximation pi = 0, the author has considered 

ions created throughout the volume and falling radially through a parabolic 
potential distribution. In this case 

u =  1-J(1-  4 , 

2 x (fj uJ2 = m f j  ui; 
i i 

our approximation replaces 819 by unity, so we might expect a 10 % error to be 
introduced at  this point. 

3. Perturbation theory 

then from (1) and (4) 
Let n(r, t )  = nJr) +nl(r) exp {i(kz +me - wt)), with similar forms for v and 7, 

(13) 

(14) 

n1 = -ns717 
- iwn, + v . (n, us P + n, v,) = up, ,  

where F is unit vector in the radial direction. Let 

.w a 9 = -z-+u- 
a ar' 

then on using (10) to eliminate some terms, we can write (14) in the form 

The linear perturbation form of (7), plus (13), give 

and 

It is easily verified that these equations are satisfied by 

which are two of the components of the perturbation form of (9). (The third 
component is an identity.) Then using (17) and (18) to eliminate n,, vlr and v,, 
from (16), we arrive at  

v;, = ikv,,, mu,, = krvl0, (18) 

where a is defined in (12) and 
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At r = ro Maxwell’s slip-type boundary condition reduces to dwldx = 0, a result 
that is not affected by the fact that the particles are charged in our application 
(Luzzi & Gross 1964). This condition also follows directly from (19), because a t  
r = ro, du/dx is infinite so that (dw/dx),o must vanish for w to remain finite at the 
boundary. At the axis the solution must be finite and continuous; in this neigh- 
bourhood u = 0 and (19) reduces to Bessel’s equation for which the appropriate 
axial boundary conditions are m $. 0, w = 0, and m = 0, dwldx = 0 (cf. the 
singularities in the last two terms of (19)). Summarizing, we have 

dw 
- 0. & -  r = ro, 

w = O  if m + 0 ,  i, = 0 if m = 0, J 
r = O  dw 

Incidently, by (18) and (211, vl, = 0 at r = r,, and so the well-known ‘Bohm’ 
condition (see discussion by Bertotti & Cavaliere 1965) still holds in the presence 
of ion waves. 

The solution of (19) for given cr, subject to (21) is possible only for a particular 
value of h, and the relation between h and cr so determined is the required dis- 
persion relation. When w has been found, the number density follows from (17), 
which can be written 

4. The solution 
The problem defined by (19) and (21) has been solved numerically for the cases 

m = 0 and m = 1, and for several radial modes in each case. As the higher radial 
modes are strongly damped, this calculation need not be extended beyond the 
second radial mode. 

Notice that if m is zero, w = const. satisfies (19) and (21) provided h2 = cr2 + icra, 
i.e. 

When cr 9 a, hR w CT, h, w 0.55. We shall label this case the zeroth radial mode 
of m = 0. The values of h,, h, for the first mode--the ( 0 , l )  mode, say-are set out 
in table 2,  which also includes the ( 1 , l )  and (1,2) modes. 

Figure 1 shows the (cr, hR) relation for the first two radial modes with m = 0, 
while figure 2 contains the (h,, a) curves for m = 0 and 1, and shows the severity 
of the damping. For example, in a 5 em diameter tube the damping length for the 
(0 , l )  mode at cr = 6 is 2.5/1.6 M 1.7 cm. Figures 3 (a )  and (b)  show the radial 
distributions for the perturbation amplitude, and for the phase angle relative to 
the axial disturbance, both for the ( 0 , l )  mode. There is no particular relation 
between the relative amplitudes in figure 3 (a)  for differing values of u. 

The experimental points shown in figure 1 are taken from Barrett & Little 
(1965), the notation used for the points being the one adopted by them. The 
method of exciting the waves produces an m = 0 mode, and this is confirmed by 
measurements of Jn,l as a function of radius. These latter measurements show 
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\ Theory 
(0, 1) mode 

Experimental points for Hg 
from Barrett & Little (1965) 

0 2 4 6 8 10 12 14 I6  18 20 22 24 
hR 

FIGURE 1. The dispersion curve. 

0 1 2 3 4 5 6 7 8 
U 

FIGURE 2. Damping due to wall losses. 
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1.2 

1 .O 

0.8 

- 
0.6 

8 

0.4 

0.2 

0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 

0.000 3.633 
0.147 3-595 
0.305 3.481 
0.488 3.286 
0.719 3.003 
1.037 2.633 
1.504 2.209 
2.144 1.840 
2.868 1.605 
3.588 1.479 
4.283 1.417 
4.954 1.393 
5.607 1.394 
6-248 1.415 
6.882 1.452 
7.514 1 * 504 
8.149 1.570 

0.000 1.976 
0.247 1-924 
0.537 1.773 
0.925 1.548 
1.439 1.332 
2.021 1.192 
2.608 1.116 
3.1 a4 1.076 
3.747 1.056 
4.302 1.050 
4.849 1.053 
5-390 1.065 
5.925 1.087 
6.453 1.121 
6.971 1.173 
7.465 1.261 
8.003 1.495 

0.000 4.984 
0.123 4.955 
0.251 4.866 
0.390 4.716 
0.549 4.500 
0.739 4.211 
0.981 3.843 
1.310 3.394 
1.781 2.888 
2.433 2.41 1 
3.207 2.062 
4.004 1.844 
4.781 1.708 
5.535 1.617 
6.276 1.544 
7.021 1.461 
7.711 1.249 

TABLE 2. Dispersion relation 

r 

0 0.2 0.4 0.6 0.8 1 .o 

(a )  
X 

I I 

- 50° i x 

\J  
FIGURE 3. (a )  Radial distribution of perturbation amplitude for various values of (r. 

(b )  Phase lag in wave. Sign of ordinate for curves 0 and 2 should be changed. 

sufficient radial variation to enable us to rule out the simple (0,O) mode in which 
lnll cc ns (cf. equation ( 2 2 ) ) .  And taking figure 1 into account it is a reasonable 
conclusion that the waves belong to the ( 0 , l )  mode, and that the theory predicts 
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the phase velocity, u/h,, fairly accurately. However, the damping is another 
matter, a problem we shall return to in 0 5 .  

Very few measurements of the radial variation of n, have been made; they are 
difficult to make, so that not too much reliance should be placed on the general 
agreement shown in figure 3 between the experimental points for CT = 3-27 and 
the trend of the theoretical curves for CT = 4. The abrupt change in sign of the 
phase lag occurring between u = 2 and u = 3 is suprising (thought to be an error 
when figure 3 ( b )  was first plotted), but it is at least qualitatively confirmed by 
recent experimental results (not shown). 

5. The wave damping 
Few measurements of wave damping are available, Little (unpublished) has 

found values of h, of about 0.25 for 3 < CT < 5 ,  while Barrett & Little found that 
for u 3 5 the waves were virtually undamped, and sometimes even growing. 
These remarks apply only to anode-approaching waves. Now even the (0,O) mode 
has twice the damping found by Little, and so we are forced to invoke the electro- 
static instabilities, as described in the introduction, to explain this discrepancy. 
The result we require is contained in Stringer's (1964) paper on this subject. 
For small %IT, and small kV,/sZ,, where V ,  is the electron drift speed and SZ, the 
Langmuir frequency, figure 1 ( b )  of the paper provides the growth rate 

y M 0*62kR E(me/mi)*, 

a value that Dr Stringer has kindly confirmed. This is the case encountered in the 
experiments. Combining this with the theory given above, we find the net 
damping coefficient, say k f ,  to be k,k yk,/w, the positive (negative) sign for 
cathode-approaching (anode-approaching) waves. This result can be expressed 
in the form 

where c, -= (KT,/m,)*. 

h; = h,( l -kg) ,  g (24) 

12 I 1 

"0 4 8 12 16 20 

FIGURE 4. Damping parameter. 

U 

In  figure 4 we have plotted that part of g given by the theory of this paper. 
For a typical experiment reported by Barrett & Little, M j /en = 2.8 x IO'cm/ 
see, and c, M 8 x lo7 cm/sec, whence g = 0.22 (hglah,). From figure 4 we find that 
h, = 0.25 at u = 6,  and that instability (g > 1) occurs for CT 2 7. This theory is, of 
course, no more than semi-empirical, for Stringer's work strictly applies only to 
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a uniform, unbounded plasma, and also the theory given in ss2-4 neglects drift 
velocities and currents. However, our superposition of the two theories does 
provide a t  least a qualitative explanation of the observations. 

Drs P. 3’. Little and R. J. Bickerton of Culham Laboratory, Berkshire have 
helped me in many discussions of the problem studied in this paper. I am also 
indebted to Dr C. Phellps of the Oxford University Computing Laboratory for the 
computer calculations on which the results of 3 4 depend. 
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